Pathways for oxalate transport in rabbit renal microvillus membrane vesicles.
نویسندگان
چکیده
Recent evidence suggests that apical membrane Cl--oxalate exchange plays a major role in mediating Cl- absorption in the renal proximal tubule. To sustain steady-state Cl- absorption by a mechanism of exchange for intracellular oxalate requires the presence of one or more pathways for recycling oxalate from lumen to cell. Accordingly, we evaluated the mechanisms of oxalate transport in luminal membrane vesicles isolated from the rabbit renal cortex. We found that transport of oxalate by Na+ cotransport is negligible compared to the transport of sulfate. In contrast, we demonstrated that oxalate shares the electroneutral pathway mediating Na+-independent sulfate-carbonate exchange. We also demonstrated the presence of OH--oxalate exchange (indistinguishable from H+-oxalate cotransport). The process of OH--oxalate exchange was electrogenic and partially inhibited by Cl-, indicating that it occurs, at least in part, as a mode of the Cl--oxalate exchanger described previously. An additional component of OH--oxalate exchange was insensitive to inhibition by either Cl- or sulfate, suggesting that it takes place by neither the Cl--oxalate exchanger nor the sulfate-carbonate exchanger. We conclude that multiple anion exchange mechanisms exist by which oxalate can recycle from lumen to cell to sustain Cl- absorption occurring via apical membrane Cl--oxalate exchange in the renal proximal tubule.
منابع مشابه
Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles.
We examined the effect of amiloride on Na+-H+ exchange in rabbit renal cortical microvillus membrane vesicles. Amiloride inhibited both the uphill Na+ accumulation induced by imposition of a transmembrane Hin+ greater than Hout+ gradient and the uphill H+ efflux induced by imposition of a Naout+ greater than Nain+ gradient. The inhibitory effect of amiloride on Na+ influx was rapidly reversible...
متن کاملConductive pathways for chloride and oxalate in rabbit ileal brush-border membrane vesicles.
To evaluate the possibility that an apical membrane conductive pathway for oxalate is present in the rabbit distal ileum, we studied oxalate ([14C]oxalate) and chloride (36Cl) uptake into brush-border membrane vesicles enriched 15- to 18-fold in sucrase activity. Voltage-sensitive pathways for oxalate and chloride were identified by the stimulation of uptake provided by an inwardly directed pot...
متن کاملpH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles.
The transport mechanism of urate and p-aminohippurate (PAH) was evaluated in microvillus membrane vesicles isolated from the renal cortex of the mongrel dog. Imposition of a transmembrane pH gradient (pHo less than pH1) markedly accelerated the uptake of [14C]urate and [3H]PAH and caused the transient accumulation ("overshoot") of each anion above its final level of uptake. The transport of ura...
متن کاملProperties of the Na+-H+ exchanger in renal microvillus membrane vesicles.
I joined the department of medicine at Yale as an assistant professor in 1977 and had a laboratory in the department of physiology. My initial studies and grants were for the characterization of Na+-glucose cotransport in renal brush border membrane vesicles, a research interest and experimental model system that I had brought from my research training with Bert Sacktor at the Gerontology Resea...
متن کاملCharacterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex.
The transport of uridine into rabbit renal outer-cortical brush-border and basolateral membrane vesicles was compared at 22 degrees C. Uridine was taken up into an osmotically active space in the absence of metabolism for both types of membrane vesicles. Uridine influx by brush-border membrane vesicles was stimulated by Na+, and in the presence of inwardly directed gradients of Na+ a transient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 271 26 شماره
صفحات -
تاریخ انتشار 1996